599 research outputs found

    Macrocyclic gelators

    Get PDF
    The field of low molecular weight supramolecular gels, also known as physical gels, has grown rapidly over the last decade. In these gels, small molecules (gelators) self-assemble through non-covalent interactions, usually into a network of fibres, to trap solvent. Many physical gels are responsive to stimuli and often these types of gels can be reversibly converted from gel to sol. These properties make them ideal candidates for investigation into a range of potential applications, including biomedical, smart materials, sensors and catalysts. This review provides an overview of macrocyclic compounds, particularly the calixarenes, that can form supramolecular gels

    Bis(dithiomethyl-tetrathiafulvalene) with two phenyl-phosphino bridges

    Get PDF
    The single crystal X-ray structure of the precursor dithiomethyl-tetrathiafulvalene (MeS)2TTF is reported, together with theoretical calculations at DFT level, which afforded two energy minima corresponding to cis and trans orientations of the thiomethyl substituents. The bis(tetrathiafulvalene) reaction of this TTF derivative followed by the reaction with phenyldichlorophosphine provides a new rigid bis(tetrathiafulvalene [TTF]) containing a 1,4-dihydro-1,4-diphosphinine ring between the two redox active units. Its solid-state structure, determined by single crystal X-ray diffraction analysis, shows the coexistence of both cis and trans isomers. Cyclic voltammetry measurements are in accordance with the existence of a communication between the two TTFs, as illustrated by the splitting of the oxidation waves

    Time-Dependent Framework for Analyzing Emergency Intervention Travel Times and Risk Implications due to Earthquakes. Bucharest Case Study

    Get PDF
    Earthquakes can generate a significant number of casualties within seconds, as well as high economic losses. The lack of rapid and coordinated emergency intervention can contribute to much greater losses. In this paper we develop a framework taking advantage of the ArcGis Network Analyst extension, able to account for post-earthquake conditions and reflect travel times. By combining 1) network characteristics with 2) direct seismic damage information, 3) models to determine road obstruction potential, 4) traffic information and time-dependent post-earthquake modeling but also 5) emergency intervention facilities (hospitals or fire stations) and considerations regarding their functional limitations, this framework can provide important support for the management of emergency intervention but also for risk reduction planning. Main results consist of maps showing travel times for various scenarios and moments after an earthquake, inaccessible areas, vital roads for access or an identification of important facilities. As case study we chose Bucharest, one of Europe’s most endangered capitals considering the seismic risk level. The city was and could be considerably affected by earthquakes in the Vrancea Seismic Zone, being characterized by a high number of vulnerable buildings and by one of the greatest typical traffic congestion levels in the world. Compared to previous network studies for Bucharest, the new approach is more complex and customable, providing means for real-time integration and time-dependent analysis. Results, for a worst-case scenario, prove that the risks could be even greater than expected, but also what should be done to mitigate them, such as the construction of a new hospital in the western part of the city, ensuring safe delimited routes for emergency vehicles or expanding the treatment capacity of actual hospitals—some of which also need seismic retrofitting. Results of this study will be integrated in the revised version of the National Conception for Post-Earthquake Response—an operational framework which will lead to risk mitigation through the improvement of post-disaster reaction

    Hierarchical Self-Assembly of Supramolecular Helical Fibres from Amphiphilic C3-Symmetrical Functional Tris(tetrathiafulvalenes)

    Get PDF
    The preparation and self-assembly of the enantiomers of a series of C3-symmetric compounds incorporating three tetrathiafulvalene (TTF) residues is reported. The chiral citronellyl and dihydrocitronellyl alkyl chains lead to helical one dimensional stacks in solution. Molecular mechanics and dynamics simulations combined with experimental and theoretical circular dichroism support the observed helicity in solution. These stacks self-assemble to give fibres that have morphologies that depend on the nature of the chiral alkyl group and the medium in which the compounds aggregate. An inversion of macroscopic helical morphology of the citronellyl compound is observed when compared to analogous 2-methylbutyl chains, which is presumably a result of the stereogenic centre being further away from the core of the molecule. This composition still allows both morphologies to be observed, whereas an achiral compound shows no helicity. The morphology of the fibres also depends on the flexibility at the chain ends of the amphiphilic components, as there is not such an apparently persistent helical morphology for the dihydrocitronellyl derivative as for that prepared from citronellyl chains

    Topological properties of punctual Hilbert schemes of almost-complex fourfolds (I)

    Get PDF
    In this article, we study topological properties of Voisin's punctual Hilbert schemes of an almost-complex fourfold XX. In this setting, we compute their Betti numbers and construct Nakajima operators. We also define tautological bundles associated with any complex bundle on XX, which are shown to be canonical in KK-theory

    A multi-modal intervention for Activating Patients at Risk for Osteoporosis (APROPOS): Rationale, design, and uptake of online study intervention material

    Get PDF
    OBJECTIVE: To develop an innovative and effective educational intervention to inform patients about the need for osteoporosis treatment and to determine factors associated with its online uptake. METHODS: Postmenopausal women with a prior fracture and not currently using osteoporosis therapy were eligible to be included in the Activating Patients at Risk for OsteoPOroSis (APROPOS). Four nominal groups with a total of 18 racially/ethnically diverse women identified osteoporosis treatment barriers. We used the Information, Motivation, Behavior Skills conceptual model to develop a direct-to-patient intervention to mitigate potentially modifiable barriers to osteoporosis therapy. The intervention included videos tailored by participants\u27 race/ethnicity and their survey responses: ranked barriers to osteoporosis treatment, deduced barriers to treatment, readiness to behavior change, and osteoporosis treatment history. Videos consisted of storytelling narratives, based on osteoporosis patient experiences and portrayed by actresses of patient-identified race/ethnicity. We also delivered personalized brief phone calls followed by an interactive voice-response phone messages aimed to promote uptake of the videos. RESULTS: To address the factors associated with online intervention uptake, we focused on participants assigned to the intervention arm (n = 1342). These participants were 92.9% Caucasian, with a mean (SD) age 74.9 (8.0) years and the majority (77.7%) had some college education. Preference for natural treatments was the barrier ranked #1 by most (n = 130; 27%), while concern about osteonecrosis of the jaw was the most frequently reported barrier (at any level; n = 322; 67%). Overall, 28.1% (n = 377) of participants in the intervention group accessed the videos online. After adjusting for relevant covariates, the participants who provided an email address had 6.07 (95% CI 4.53-8.14) higher adjusted odds of accessing their online videos compared to those who did not. CONCLUSION: We developed and implemented a novel tailored multi-modal intervention to improve initiation of osteoporosis therapy. An email address provided on the survey was the most important factor independently associated with accessing the intervention online. The design and uptake of this intervention may have implications for future studies in osteoporosis or other chronic diseases

    Twists and turns in the hierarchical self-assembly pathways of a non-amphiphilic chiral supramolecular material

    Get PDF
    The formation of helical self-assembled fibres by a C-3 symmetric molecule incorporating three tetrathiafulvalene units is shown to be influenced dramatically by the processing conditions, leading to a variety of different chiral forms, including unprecedented croissants

    Markers of Treatment Response to Methotrexate in Rheumatoid Arthritis: Where Do We Stand?

    Get PDF
    Methotrexate (MTX) is the most commonly used disease-modifying antirheumatic drug (DMARD) for the treatment of rheumatoid arthritis (RA). However, despite its efficacy and affordability, additional DMARDs or biologic agents are often required in order to achieve the recommended goals of low disease activity or remission. Although well tolerated by most, some patients develop important side effects such as cytopenias, gastrointestinal adverse events (stomatitis, nausea), or abnormal liver function tests, which may limit its use and may result in additional health care costs. Given the clinical implications of widespread use of MTX in RA, various studies have evaluated the role of potential biomarkers in predicting treatment effectiveness of MTX. These biomarkers include RBC MTX polyglutamate (PG) levels; genetic variation in genes from relevant biological and metabolic pathways; gene expression profiles; serum proteins. This paper provides an update on the current data regarding biomarkers of treatment response to MTX
    corecore